DOE_Crosshair (Crosshair)
: LD-Collimators-Diffractive-Optics
LD Collimators & Diffractive Optics: Pattern-Generator
Diffractive Optical Element (DOE)
Description:
LD Collimators & Diffractive Optics: Crosshair
These crosshairs find applications in various fields. In optical sights for firearms, archery, and other aiming devices, they provide a precise aiming point without the bulk of traditional optics. They are also used in metrology and alignment tasks within scientific and industrial settings, where exact alignment and measurement are critical. Additionally, some display technologies utilize diffractive crosshairs to project specific patterns or enhance visual effects.
LD Collimators & Diffractive Optics: Pattern-Generator
Diffractive pattern generators stand out due to several unique characteristics that distinguish them from other optical technologies. One of their most significant advantages is their ability to precisely control light at a microscopic level. The microstructures on the diffractive optical elements (DOEs) are meticulously designed to manipulate the phase and amplitude of light waves, enabling the creation of highly accurate and complex light patterns. This level of precision is challenging to achieve with traditional optical components. Another key feature is the high degree of customization and versatility they offer. By designing specific patterns into the DOE, manufacturers can tailor the light output to meet various application needs. Whether producing simple shapes like lines and circles or more intricate designs for holography and 3D imaging, the versatility of these generators makes them suitable for a wide range of uses. Diffractive optics pattern generators are also known for their efficiency and compactness. Compared to conventional optics that rely on refraction and reflection, diffractive optics can achieve similar or superior performance with much thinner and lighter components. This efficiency leads to more compact and lightweight designs, which are particularly advantageous in portable devices and systems where space and weight are critical factors. The ability to produce light patterns with very high resolution and uniformity is another hallmark of diffractive optics pattern generators. This quality is essential in applications like laser projection and optical metrology, where clarity and consistency of the light pattern are paramount. Additionally, these generators can be designed to work with specific wavelengths of light, including visible, ultraviolet, and infrared. This wavelength versatility allows for their use in a wide range of scientific and industrial applications, from microscopy to laser cutting and medical imaging. Diffractive optics pattern generators are highly compatible with modern laser and photonic technologies. They can be integrated into existing systems to enhance performance and functionality, such as improving beam shaping in laser machining or enhancing image quality in projection systems. The robustness and durability of these generators are notable as well. The microstructures on DOEs are typically etched or printed onto durable materials, making them robust and long-lasting. This durability is especially beneficial in industrial environments where equipment must withstand harsh conditions. Finally, while the initial design and fabrication of DOEs can be complex, the production process can be highly cost-effective, especially for large quantities. Once a DOE design is finalized, it can be replicated with high precision at a relatively low cost, making it an economical choice for mass production. In summary, diffractive optics pattern generators are distinguished by their precision, versatility, efficiency, high-quality output, wavelength adaptability, ease of integration, robustness, and cost-effectiveness. These attributes make them a preferred choice in various advanced optical applications, from industrial manufacturing to cutting-edge scientific research.
This article refers to: DOE_Crosshair (Crosshair) (: LD-Collimators-Diffractive-Optics LD Collimators & Diffractive Optics: Pattern-Generator ) - Crosshair
Pattern Size@ 100mm Distance (@ Design Wavelength) |
Pattern Angles (@ Design Wavelength) |
||||
DOE Item # | Description | Design Wavelength | a | α | Optimum Wavelength Range |
FDE-R197 | Cross – 45@450 | 450 nm | 83 mm | 45° | 425 – 590 nm |
FDE-R205 | Cross – 5@650 | 650 nm | 8.7 mm | 5° | 580 – 660 nm |
FDE-R212 | Cross – 25@532 | 532 nm | 45.1 mm | 25.4° | 500 – 640 nm |
FDE-R214 | Cross – 2@645 | 645 nm | 3.4 mm | 2.0° | 600 – 645 nm |
FDE-R218 | Cross – 15@640 | 640 nm | 26.3 mm | 15.0° | 500 – 640 nm |
FDE-R239 | Cross – 5@520 | 520 nm | 8.7 mm | 5.0° | 488 – 600 nm |
FDE-R245 | Cross – 10@633 | 633 nm | 17.5 mm | 10.0° | 570 – 690 nm |
FDE-R246 | Cross with surrounding high contrast area -@633 |
633 nm | 17.5 mm | 10.0° | 530 – 670 nm |
FDE-R247 | Cross – 25@645 | 645 nm | 44.3 mm | 25.0° | 600 – 800 nm |
FDE-R248 | Cross – 37@645 | 645 nm | 66.8 mm | 37.0° | 630 – 700 nm |
FDE-R249 | Cross – 45@633 | 633 nm | 83.0 mm | 45.0° | 500 – 640 nm |
FDE-R270 | Cross – 30@640 | 640 nm | 53.6 mm | 30.0° | 580 – 650 nm |
FDE-R280 | Cross – 60@635 | 635 nm | 115.5 mm | 60.0° | 580 – 690 nm |
FDE-R289 | Cross – 15@520 | 520 nm | 26.4 mm | 15.0° | 480 – 550 nm |
FDE-R299 | Cross – 75@650 | 650 nm | 153.5 mm | 75.0° | 600 – 700 nm |
FDE-R340 | Cross – 60@450 | 450 nm | 116.1 mm | 60.3° | 420 – 520 nm |
FDE-R342 | Cross – 52@515 | 515 nm | 97.6 mm | 52.0° | 440 – 540 nm |
FDE-R382 | Cross – 30@450 | 450 nm | 53.6 mm | 30.0° | 440 – 480 nm |
|
- LD-Collimators-Diffractive-Optics
- Pattern-Generator